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Abstract—We propose a new distributed algorithm for sparse
variants of the network alignment problem, which occurs
in a variety of data mining areas including systems biology,
database matching, and computer vision. Our algorithm uses
a belief propagation heuristic and provides near optimal
solutions for this NP-hard combinatorial optimization problem.
We show that our algorithm is faster and outperforms or
ties existing algorithms on synthetic problems, a problem in
bioinformatics, and a problem in ontology matching. We also
provide a unified framework for studying and comparing all
network alignment solvers.

Keywords-network alignment; belief propagation; graph
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I. INTRODUCTION

The focus of the network alignment problem is to find

approximate isomorphisms, or alignments, between similar

graphs. It is widely applied to problems in bioinformatics [1],

[2], database schema matching [3], ontology matching [4],

and computer vision [5], [6] (where it is also known as the

weighted graph matching problem). Recent algorithms solve

this problem approximately for graphs with around 10,000

vertices, however there are few comparisons among them.

We propose a new algorithm based on belief propagation,

survey and compare existing algorithms on real and synthetic

data, and investigate a problem with over 200,000 vertices.

A. Network alignment
Consider two graphs A = (VA, EA), B = (VB , EB) with

vertex sets VA = {1, 2, . . . , n} and VB = {1′, 2′, . . . , m′}
and let L be a bipartite graph between the vertices of A and B,

formally L = (VA ∪VB , EL). The goal is to find a matching

between vertices in A and B where all possible matches

must be from the edges of L. A matching in L is a subset of

EL such that no two edges share a common endpoint. Let M
be such a matching. For a matching M , we say that an edge

(i, i′) ∈ M forms a square with another edge (j, j′) ∈ M if

(i, j) ∈ EA and (i′, j′) ∈ EB . In such situation we also say

that the edges (i, j) ∈ EA and (i′, j′) ∈ EB are overlapped.

Denote the set of all squares by VS . See Figure 1 for an

illustration.

Definition 1. Given A, B, and L as above, the overlap graph
matching problem is to find a matching M that maximizes
the total number of squares (overlapped edges).
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Figure 1. The setup for the network alignment problem. The goal is to
maximize the number of squares in any matching while maximizing the
weight of the matching as well.

When L is the complete bipartite graph, then overlap

graph matching is the maximum common subgraph problem.

Thus, it is NP -hard. When each edge (i, i′) of L has a

non-negative weight wii′ , often the problem is generalized

to finding a matching that is large in both weight and the

number of squares. This new version is called the network
alignment problem and is formally defined in Section II-A.

B. Our contribution

Most of the existing literature on the problem (except

Klau [1]) assumes that L is the complete bipartite graph. We

explicitly formulate the problem with only a sparse set of

possible matches between A and B. This formulation easily

handles sparse graphs with over 200,000 vertices and also

expresses many existing algorithms. Using this formulation:

1) we provide the first unified framework for studying all

algorithms; 2) we propose a fast algorithm based on max-

product belief propagation; and 3) we compare the algorithms

on two synthetic and three real datasets. These experiments

show our belief propagation algorithm is fast and robust. It

yields near-optimal solutions in the tests, and it outperforms

or nearly ties with the best existing algorithm [1] in terms

of quality of the solution on extremely sparse graphs. On

slightly dense graphs, our algorithm performs better than

others. Therefore, we see great potential for our approach in

future network alignment applications. All of our algorithms

are implemented in MATLAB and are available from http:

//www.stanford.edu/∼dgleich/publications/2009/netalign. A

longer version of this manuscript is available on arXiv [7].
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C. Related Work

The network alignment problem has a rich and evolving

literature. It has been studied within the context of database

schema matching [3], protein interaction alignment [2], [8],

ontology matching [4], and pattern recognition [5].

The maximum common subgraph problem is the oldest

related literature. Most of the algorithms for this problem seek

an exact solution and require exponential time [9]. Other

heuristics include [10], Graemlin [11], the IsoRank algo-

rithm [2], the closely related similarity flooding algorithm [3],

and an SDP based algorithm [6]. Finally, Klau [1] formulates

the problem as a quadratic program and proposes a series

of linear programming relaxations. Among these algorithms

only IsoRank (or similarity flooding), and Klau’s algorithm

can handle large graphs well. Independent from our work,

[12] developed a different algorithm based on BP to study the

maximum-clique and graph-alignment problems for random

graphs.

II. PROBLEM FORMULATION

In this section we investigate a QP and LP formulation of

the problem and several relaxations.

A. Quadratic Program Formulation

First we introduce the notation ii′ instead of (i, i′) for

an edge of L. For each edge ii′ ∈ EL, we assign a binary

variable xii′ = 1 if ii′ is in the matching M or xii′ = 0 if

it is not. The total number of squares (overlapped edges) is

(1/2)xT Sx, where x is the |EL| × 1 vector of all xii′ ’s and

S is a 0, 1 matrix of size |EL| × |EL| such that Sii′,jj′ = 1
if and only if the corresponding edges ii′ and jj′ of L form

a square (contribute an overlap). We construct both x and S
according to a fixed ordering of the edges of L.

The vector x must be a valid matching, so for any

vertex of L, the sum of xii′’s on the edges incident to

it cannot exceed 1. We can write this as Ax ≤ 1. Here

1 = 1n+m ∈ R
(n+m)×1 is the vector of all ones. Using

these definitions, the network alignment problem is an integer

quadratic program (QP)

maximize
x

αwT x + (β/2)xT Sx

subject to Ax ≤ 1, xii′ ∈ {0, 1} (NAQP)

where α, β are arbitrarily chosen nonnegative constants to

balance the matching and overlap objectives. Picking α = 0
and β = 1 produces the overlap graph matching problem.

See Figure 2 for an example.

B. Linear Program Formulations

Klau [1] originally described a linear programming re-

laxation of (NAQP). In the longer manuscript online, we

show the relaxation in our sparse-alignment formulation [7].

The most efficient algorithm for the LP is a sequence of

max-weight matching problems. This algorithm is called

NetAlignMR in the remainder of this short paper.

III. A BELIEF PROPAGATION ALGORITHM

In this section we introduce a distributed algorithm that

is inspired by a recent result on solving the maximum

weight matching problem using the max-product version

of belief propagation (BP) [13]. For simplicity, we refer to

this algorithm by BP. We will show in Sections IV-V that the

BP algorithm always produces better results than IsoRank,

and compared to NetAlignMR, BP is either better or its

solutions are close. But, BP has a better running time than

NetAlignMR and IsoRank.

Recently, BP and its variations have been successful for

the solution of random constraint satisfaction problems [14].

It has also been known for many years in the context of

coding theory [15], artificial intelligence [16], and computer

vision [17]. Recent applications can also be found in systems

biology [18] and data clustering [19].

The goal of the BP algorithm that we develop here is

to solve the integer program (NAQP) directly. We obtain a

distributed algorithm that runs by passing messages along

the edges of graph L and also along the squares. The

main intuition behind this algorithm (and, indeed, all BP

algorithms) is that each vertex of the graph assumes the

graph has no cycles, and makes the best (greedy) decision

based on this assumption.

In the interest of space, we leave a detailed derivation of

the algorithm for the longer version of this paper [7]. Here

is our BP algorithm for the network alignment problem.

Algorithm BP Input (VA, VB , EL, VS) Output M ⊂ EL

1) At times t = 0, 1, . . ., each edge ii′ sends two messages of the

form m
(t)

ii′→i
and m

(t)

ii′→i′ and also sends one message of the form

m
(t)

ii′→ii′jj′ for any square ii′jj′. All messages of time t = 0 are

initialized by an arbitrary number (let us say 0).
2) For t ≥ 1, and for all ii′ ∈ EL

m
(t)

ii′→i
= αwii′ −

(
max
k �=i

[
m

(t−1)

ki′→i′

])+

+
∑

ii′jj′∈VS

min

(
β

2
, max(0,

β

2
+ m

(t−1)

jj′→ii′jj′ )
)

. (1)

The update rule for m
(t)

ii′→i′ is similar, and

m
(t)

ii′→ii′jj′ =
∑

kk′ �=jj′
ii′kk′∈VS

min

(
β

2
, max(0, m

(t−1)

kk′→ii′kk′ +
β

2
)

)

+ αwii′ −
(

max
k �=i

[
m

(t−1)

ki′→i′

])+

−
(

max
k′ �=i′

[
m

(t−1)

ik′→i

])+

.

(2)

where (a)+ means max(a, 0).
3) At the end of iteration t each vertex i selects the edge ii′ that

sends the maximum incoming message m
(t)

ii′→i
to it. Denote the

set of these selected edges by M(t). Now, repeat (2)-(3) until M(t)
converges.
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Figure 2. A small sample problem and the data for the QP formulation.

A. Convergence of BP

In practice M(t) does not necessarily converge, and in

most cases it oscillates between a few states. Therefore,

we can terminate the algorithm when such an oscillation

is observed, and use the current messages of the edges as

weights of a MWM problem to obtain an integer solution.

Another approach for resolving the oscillation, is to use a

damping factor γ ∈ [0, 1]. In this approach each messages at

time t is a linear combination of its value at time t − 1 and

its new value is based on equations (1)-(2) with coefficients

(1−γt) and γt respectively. See for example [20], [21], [19]

for various ways of damping BP messages.

B. A matrix formulation

For A ∈ R
m,n and x ∈ R

n, define A� x to be a vector

in R
m×1 where its rth entry is maxj ar,jxj . This operator is

just the regular matrix-vector product but with the summation

(Ax)i =
∑

j ai,jxj replaced by maximization.

Now we present a matrix formulation of the BP algorithm.

We need to split the constraint matrix A into [AT
r AT

c ]T

corresponding to the matching constraints in graph A and

graph B, respectively.

Algorithm NetAlignBP
Input A = [AT

r AT
c ]T , S, w, damping parameter γ, niter

1 y(0) = 0, z(0) = 0, S(0) = 0
2 for t = 1 to niter

3 F = bound
0,

β
2
(S(t−1)T

+ β
2
S)

4 d = F · e
5 y(t) = αw − bound0,∞[(AT

r Ar − I)� z(t−1)] + d

6 z(t) = αw − bound0,∞[(AT
c Ac − I)�y(t−1)] + d

7 S(t) = (diag[y(t) + y(t) − αw − d]) · S − F

8
(y(t), z(t), S(t)) ←

γt(y(t), z(t), S(t)) + (1 − γt)(y(t−1), z(t−1), S(t−1))
9 end

To produce a binary output, NetAlignBP ends by solving

two maximum weight matching problems weighted by the

messages y(t) and z(t). It then outputs the solution with the

best objective.

IV. SYNTHETIC EXPERIMENTS

In this section we generate two types of synthetic network

alignment data and compare our NetAlignBP algorithm with

IsoRank (actually a sparse variant SpaIsoRank, see the full

paper [7]) and NetAlignMR.

In the first class of data, we start by taking two copies

of a k × k grid as A and B. Then for each vertex i ∈ VA

and its corresponding copy in VB we add the edge ii′ to L.

We call these |VA| edges correct. Then for any two random

vertex pairs i ∈ VA, j′ ∈ VB we add the edge ij′ to L,

independently, with probability p for some fixed constant

0 ≤ p ≤ 1.

In order to make the model more realistic, we need to

perturb graphs A, B by adding an edge between any two

random vertices u, v ∈ VA ( u′, v′ ∈ VB ), independently,

with probability proportional to q/dA(u, v)2 (q/dB(u′, v′)2),

where dG(u, v) is the distance between u, v in G.

In these problems, the ideal alignment is known: the set

of all correct edges ii′. In real-world networks, each correct

edge ii′ may be mistaken by many edges jj′ where dA(i, j)
and dB(i′, j′) are small. To capture this, we add some random

edges to L within graph distance d of the end points of the

ideal alignment.

In the second class, we let A, B be random power-law

degree sequence graphs with exponent θ and n vertices. This

means the fraction of vertices with degree k is proportion

to k−θ. Similarly, we add correct and noisy edges to L and

perturb graphs A, B. But we do not add the additional

distance based noise to L.

In our results, we compare the outputs of all algorithms

to the correct matching edges ii′ between the graphs A
and B. Figure IV shows the average fraction of the correct

matching obtained by each algorithm over 10 trials. Here the

objective value of the network alignment is the total number
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(a) Grid graphs (k = 20, q = 2, d = 1)
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(b) Power-law graphs (θ = 1.8, n = 400, q = 1)

Figure 3. Upper bounds and solutions to synthetic problems on grid-graphs (a) and power-law graphs (b). Dark lines are values of the network alignment
objective and light lines are the number of correct matches. The BP algorithm performs the best in terms of objective and correct matches. See Section IV
for more information.

of squares, and the dark lines in the figure show the ratio

of the algorithm’s objective to the objective value when the

correct matching is used.

Although the larger values for the objective tend to recover

a higher fraction of the correct matching, the correct matching

may not produce the best objective (highest number of

squares) when L is highly corrupted with a large number

of edges. This explains a few cases where the fraction is

more than 1. Similarly, the light lines show the fraction of

the correct matches that each algorithm has recovered. These

values track the objective values showing that the network

alignment objective is a good surrogate for the number of

correct matches objective.

We see that BP and MR produce the best solutions. When

the amount of random noise in L exceeds an expected degree

(n · p) of 10 for the grid graphs and 8 for the power-law

graphs, many of the algorithms are no longer able to obtain

good solutions. In this regime, the BP algorithm performs

significantly better than the MR algorithm.

We used the BP algorithm with α = 1, β = 2, the IsoRank

algorithm with γ = 0.95, and the MR algorithm with α =
0, β = 1 for these experiments.

V. REAL DATASETS

While we saw that the BP algorithm performed well on

noisy synthetic problems in the previous section, in this sec-

tion we investigate alignment problems from bioinformatics

and ontology matching. Table I summarizes the properties

of these problems.

Table I

Problem |VA| |EA| |VB | |EB | |EL|
dmela-scere 9459 25636 5696 31261 34582
Mus M.-Homo S. 3247 2793 9695 32890 15810
lcsh2wiki-small 1919 1565 2000 3904 16952
lcsh2wiki-full 297266 248230 205948 382353 4971629

A. Bioinformatics

The alignment of protein-protein interaction (PPI) networks

of different species is an important problem in bioinformat-

ics [2]. We consider aligning the PPI network of Drosophila

melanogaster (fly) with Saccharomyces cerevisiae (yeast),

and Homo sapiens (human) with Mus musculus (mouse).

These PPI networks are available in several open databases

and they are used in [8] and [1], respectively. While the

results of the experiment are rich in biological information,

we focus our interest solely on the optimization problem.

Figure 4 shows the performance of the three algorithms

(NetAlignBP, NetAlignMR, SpaIsoRank) on these two align-

ments. For each algorithm, we run it for 100 iterations

(SpaIsoRank and NetAlignBP) or 500 iterations (NetAl-

ignMR) with varied α and β parameters and various damping

parameters and stepsizes. For each combination of parameters,

we record the best iterate ever generated and plot the overlap

and weight of the alignments in the figure.

In both problems NetAlignBP and NetAlignMR man-

age to obtain near-optimal solutions. NetAlignMR slightly

outperforms NetAlignBP, and they both dominate IsoRank.

NetAlignBP has a better running time instead.
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Figure 4. Results of the three algorithms NetAlignBP, SpaIsoRank, and NetAlignMR on the dmela-scere alignment from [8] (left), and on the Mus
M.-Homo S. alignment from [1] (right).
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Figure 5. Results of the three algorithms NetAlignBP, SpaIsoRank, and NetAlignMR on lcsh2wiki-small (left), and on lcsh2wiki-full (right).

B. Ontology

Our original motivation for investigating network align-
ment is aligning the network of subject headings from the

Library of Congress with the categories from Wikipedia [22].

Each node in these networks has a small text label, and we

use a Lucene search index to quickly find potential matches

between nodes based on the text. To score the matches, we

use the SoftTF-IDF scoring routine [23]. Our real problem is

to match the entire graphs. From this problem we extract a

small instance that should capture the most important nodes

in the problem. Node importance is either reference count

(subject headings) or PageRank (Wikipedia categories). The

results are shown in Figure 5. We leave a detailed description

of this data-set and implications of the network alignment

to the longer version of the paper [7].

We saw similar behaviors as in Section V-A. NetAlignMR

and BP are close in overlap and they outperform IsoRank.

Though not shown in the figure, BP obtains a lower bound

of 16204 in lcsh2wiki-full with γ = 0.9995, α = 0.2 and

β = 1.

In all our real datasets L is quite sparse, making NetAl-

ignMR more favorable. Still, BP produces closely comparable

results and has an advantage on running time. We leave

evaluating the accuracy and precision of the matches to a

future paper. IsoRank is outperformed in these experiments,

but it was originally designed for multi-way matching, i.e.

between more than two PPI networks.
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VI. CONCLUSIONS

In all of our experiments NetAlignBP yields near-optimal

solutions, and it significantly outperforms other algorithms

when L is dense. The experiments also show that results of

NetAlignBP and NetAlignMR are withing 95% of the upper

bound in large graphs with 5,000,000 potential edges and

hundreds of thousands of vertices, which is promising since

the problem is APX-hard. Our study shows that the current

network alignment algorithms are fast and good enough to

handle large-scale real world problems.

When the set of potential matches (L) is dense, all

algorithms studied in this paper are impractical for large

graphs. NetAlignBP suffers from a large storage demand

(|EA| × |EB |). NetAlignMR has similar storage limitations

and becomes slow since it is solving a large number of

MWM instances per iteration. When L is the complete

bipartite graph, IsoRank does not need to form the matrix

S explicitly, thus greatly saving on storage. However, the

solution it produces is not satisfying. One future direction

will be finding an algorithm that performs well when L is

dense.

NetAlignMR is based on a tightened LP where the key

idea is solving a sub matching problem for each row

of S. It is a tempting idea to combine this technique

with NetAlignBP. Furthermore, our experiments show that

NetAlignMR corresponds to an LP with a small integrality

gap in most cases. Finding another LP relaxation with a

smaller integrality gap is an interesting problem.
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[10] J. Berg and M. Lässig, “Cross-species analysis of biological
networks by bayesian alignment,” PNAS, vol. 103, no. 29, pp.
10 967–10 972, 2006.

[11] J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams,
and S. Batzoglou, “Græmlin: General and robust alignment
of multiple large interaction networks,” Genome Research,
vol. 16, pp. 1169–1181, August 2006.

[12] S. Bradde, A. Braunstein, H. Mahmoudi, F. Tria, M. Weigt,
and R. Zecchina, “Aligning graphs and finding substructures
by message passing,” arXiv, vol. 0905.1893, 2009.

[13] M. Bayati, D. Shah, and M. Sharma, “Maximum weight match-
ing via max-product belief propagation,” in Intl. Symposium
on Information Theory, 2005, pp. 1763–1767.

[14] M. Mezard and R. Zecchina, “Random k-satisfiability: from
an analytic solution to a new efficient algorithm,” Phys.Rev.
E, vol. 66, 2002.

[15] R. G. Gallager, Low Density Parity Check Codes. MIT Press,
Cambridge MA, 1963.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann, San
Francisco, 1988.

[17] M. Tappen and W. Freemand, “Graph cuts and belief propa-
gation for stereo, using identical mrf parameters,” in ICCV,
2003.

[18] C. Yanover and Y. Weiss, “Approximate inference and protein
folding,” in NIPS, 2002.

[19] B. J. Frey and D. Dueck, “Clustering by passing messages
between data points.” Science, vol. 315, no. 5814, pp. 972–976,
February 2007.

[20] K. Murphy, Y. Weiss, and M. Jordan., “Loopy belief propaga-
tion for approximate inference: An empirical study,” in Proc.
of Uncertainty in Artificial Intelligence (UAI), 1999.

[21] A. Braunstein and R. Zecchina, “Learning by message passing
in networks of discrete synapses,” Phys. Rev. Lett., 2006.

[22] Various, “Wikipedia XML database dump.” http://en.wi-
kipedia.org/wiki/Wikipedia:Database download, Apr. 2007.

[23] W. W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of
string metrics for matching names and records,” in Proc. of the
KDD Workshop on Data Cleaning and Object Consolidation,
2003.

710

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 31, 2010 at 14:04 from IEEE Xplore.  Restrictions apply. 


